Pre-training Strategies

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Tanmoy Chakraborty Associate Professor, IIT Delhi https://tanmoychak.com/

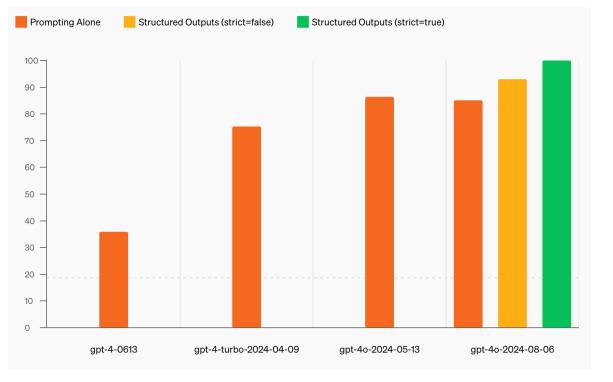
OpenAl introduces **Structured Outputs in the API** for GPT-40 !

Announced on August 6, 2024

OpenAl Blog

Model outputs can now be made to reliably adhere to developer-supplied JSON Schemas

This will be very useful for developers looking to **build reliable applications** with GPT-40 API in the backend. With Structured Outputs in the API, model-generated outputs will **exactly match the JSON Schemas** provided by developers



With Structured Outputs, GPT-4o scores a perfect 100% in JSON schema following, while with just prompting GPT-4 scores less than 40% in output format following. "You shall know a word by the company it keeps"

This quote is a summary of **distributional semantics**, and motivated **word2vec**. But:

"... the complete meaning of a word is always contextual, and no study of meaning apart from a complete context can be taken seriously." (J. R. Firth 1935)

I record the record

the two instances of *record* mean different things.

Background - Contextual Representations

 Word embeddings serve as the foundation for deep learning models in natural language processing.

[0.286,0.792,-0.177,....]

Problem : Word embeddings (word2vec, GloVe) are used without considering the ulletcontext in which the words appear. A bat flew out of the cave.


```
He hit the ball with a bat.
       A bat flew out of the cave.
[-0.107, 0.109, -0.542, ....]
                                                     [0.349, 0.271, 0.130, ....]
```

The representation of the word should depend on the context in which it appears.

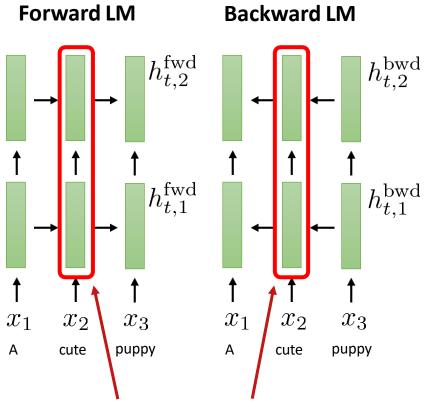
He hit the ball with a bat.

Deep contextualized word representations

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

ELMo (Embedding from Language Models)

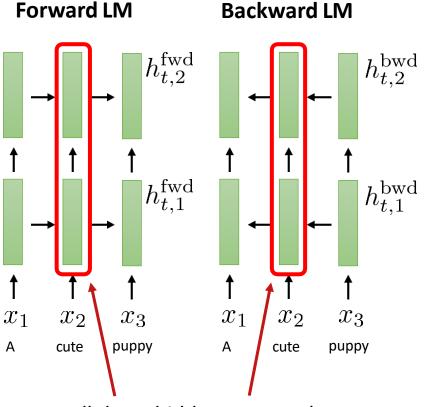


All these hidden states, when combined, represent the word "cute."

Replace static embeddings (lexicon lookup) with contextdependent embeddings (produced by a deep neural language model)

- Each token's representation is a function of the entire input sentence, computed by a deep (multi-layer) bidirectional language model
- Return for each token a (task-dependent) linear combination of its representation across layers.
- Different layers capture different information

ELMo Architecture



All these hidden states, when combined, represent the word "cute."

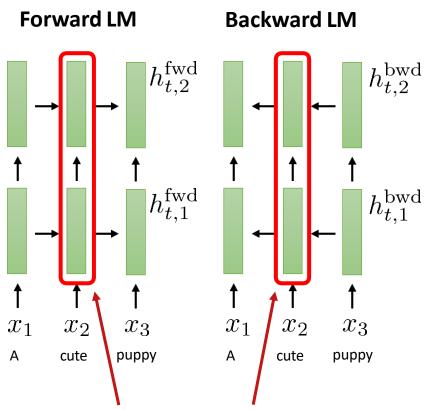
—Train a multi-layer bidirectional language model with character convolutions on raw text

—Each layer of this language model network computes a vector representation for each token.

— Freeze the parameters of the language model.

—For each task: train task-dependent softmax weights to combine the layer-wise representations into a single vector for each token *jointly* with a task- specific model that uses those vectors

ELMo Architecture



All these hidden states, when combined, represent the word "cute."

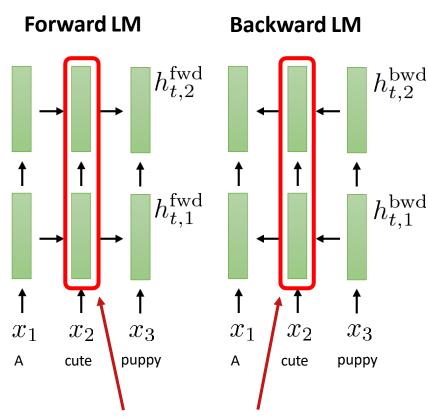
The forward LM is a deep LSTM that goes over the sequence from start to end to predict token t_k based on the prefix $t_1...t_{k-1}$: $p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s)$

Parameters: token embeddings $\Theta_x \text{ LSTM } \overrightarrow{\Theta}_{LSTM}$ softmax Θ_s

The backward LM is a deep LSTM that goes over the sequence from end to start to predict token t_k based on the suffix $t_{k+1}...t_N$: $p(t_k | t_{k+1}, ..., t_N; \Theta_x, \Theta_{LSTM}, \Theta_s)$

Train these LMs jointly, with the same parameters for the token representations and the softmax layer (but not for the LSTMs) $\sum_{k=1}^{N} \left(\log p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k | t_{k+1}, ..., t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s) \right)$

ELMo's Token Representation



All these hidden states, when combined, represent the word "cute."

Given a token representation \mathbf{x}_k , each layer *j* of the LSTM language models computes a vector representation $\mathbf{h}_{k,j}$ for every token *k*.

With L layers, ELMo represents each token as

$$\begin{split} R_k &= \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\} \\ &= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\}, \\ \end{split}$$
where $\mathbf{h}_{k,j}^{LM} = [\overrightarrow{\mathbf{h}}_{k,j}^{LM}; \overleftarrow{\mathbf{h}}_{k,j}^{LM}]$ and $\mathbf{h}_{k,0}^{LM} = \mathbf{x}_k$

ELMo learns softmax weights s_j^{task} to collapse these vectors into a single vector and a task-specific scalar γ^{task} :

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}.$$

simple version: $\text{ELMO}_t = [h_{t,2}^{\text{fwd}}, h_{t,2}^{\text{bwd}}]$ top layer hidden states

ELMo's Token Representation

• The input token representations are purely **character-based**: a character CNN, followed by linear projection to reduce dimensionality

• 2048 character n-gram convolutional filters with two highway layers, followed by a linear projection to 512 dimensions"

• Advantage over using fixed embeddings: no UNK tokens, any word can be represented

Evaluation

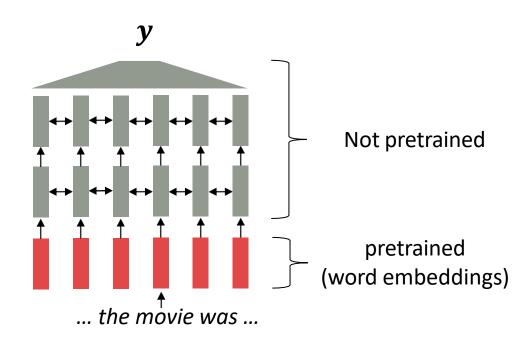
ELMo gave improvements on a variety of tasks:

- question answering (SQuAD)
- entailment/natural language inference (SNLI)
- semantic role labeling (SRL)
- coreference resolution (Coref)
- named entity recognition (NER)
- sentiment analysis (SST-5)

TASK	PREVIOUS SOTA		OUR ELMO + BASELINE BASELINE		INCREASE (ABSOLUTE/ RELATIVE)	
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7/24.9%	
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%	
SRL	He et al. (2017)	81.7	81.4	84.6	3.2/17.2%	
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%	
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06/21%	
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3/6.8%	

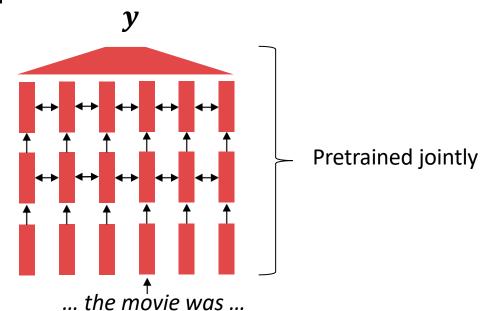
Where We Were: Pre-trained Word Vectors

- Start with pretrained word embeddings (no context!)
- Learn how to incorporate context in an LSTM or Transformer while training on the task.
- The training data we have for our downstream task (like question answering) must be sufficient to teach all contextual aspects of language.
- Most of the parameters in our network are randomly initialized!



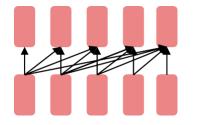
Pre-trained Word Vectors -> Pre-trained Models

- All (or almost all) parameters in NLP networks are initialized via pretraining.
- Pretraining methods hide parts of the input from the model, and train the model to reconstruct those parts.
- This has been exceptionally effective at building strong:
 - representations of language
 - **parameter initializations** for strong NLP models.
 - Probability distributions over language that we can sample from



Pretraining for Three Types of Architectures

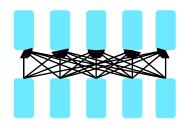
The neural architecture influences the type of pretraining, and natural use cases.



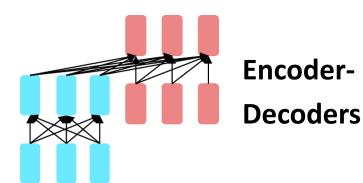
Decoders

Encoders

- Language models! What we've seen so far.
- Nice to generate from; can't condition on future words



- Gets bidirectional context can condition on future!
 - How do we pretrain them?



- Good parts of decoders and encoders?
- What's the best way to pretrain them?

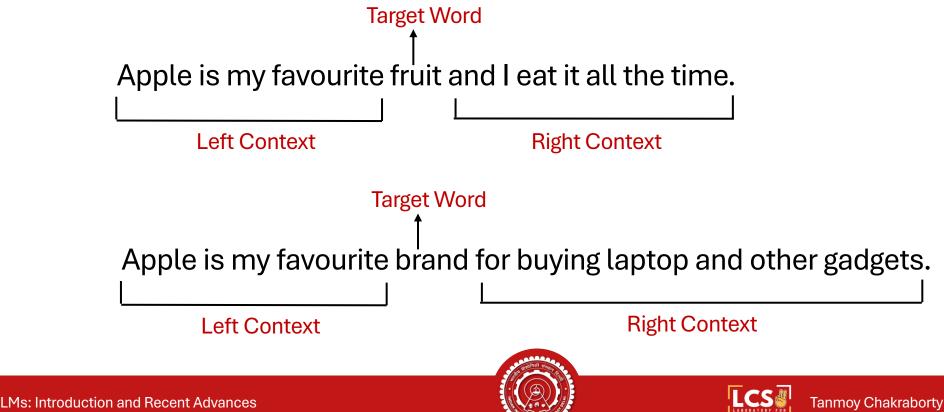
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

Slides are adopted from Jacob Devlin

Background - Bidirectional Context

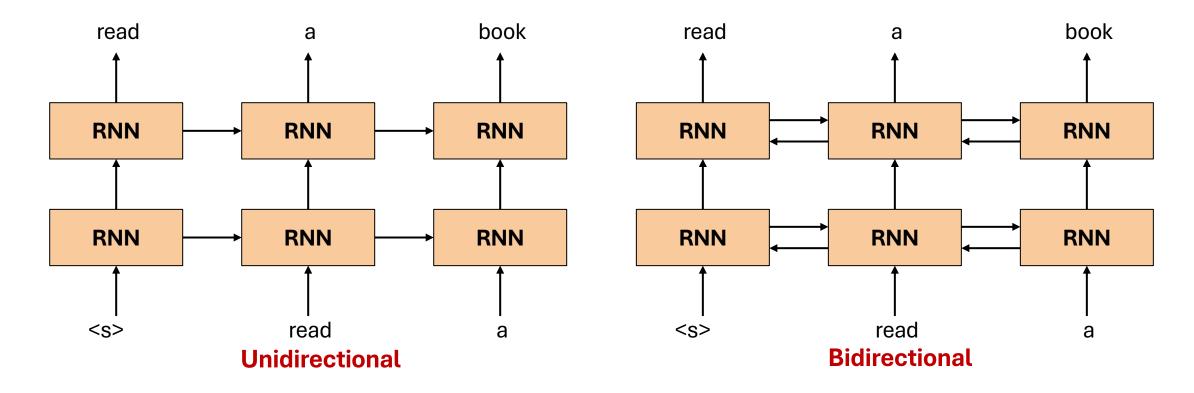
• Bidirectional context, unlike unidirectional context, takes into account both the left and right contexts.



Motivation

- Problem with previous methods:
 - Language models only use left context or right context.
 - But language understanding is **bidirectional**.
- Possible Issue:
 - Directionality is needed to generate a well-formed probability distribution.
 - Words can see themselves in a bidirectional model.

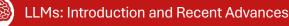
Unidirectional vs. Bidirectional Models



Masked Language Modeling

• Mask out k% of the input words, and then predict the masked words (Usually k = 15%). Example :

- Too little masking: Too expensive to train
- Too much masking: Not enough context
- The model needs to predict 15% of the words, but we don't replace with [MASK] 100% of the time. Instead:
 - $\,\circ\,$ 80% of the time, replace with [MASK]
 - $\circ~$ Example : like going to the park \rightarrow like going to the [MASK]
 - $\,\circ\,$ 10% of the time, replace random word
 - $\circ~$ Example : like going to the park \rightarrow like going to the store
 - $\,\circ\,$ 10% of the time, keep same
 - $\circ~$ Example : like going to the park \rightarrow like going to the park



Next Sentence Prediction

 To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence.

```
Input = [CLS] I enjoy read [MASK] book ##s [SEP]
I finish ##ed a [MASK] novel [SEP]
Label = IsNext
```

Input = [CLS] I enjoy read ##ing book [MASK] [SEP] The dog ran [MASK] the street [SEP] I abel = NotNext

- Important for many important downstream tasks such as Question Answering (QA) and Natural Language Inference (NLI)
- How to choose sentences A and B for pretraining?
 - 50% of the time B is the actual next sentence that follows A (labeled as IsNext)
 - 50% of the time it is a random sentence from the corpus (labeled as NotNext)

Input Representation

- Use 30,000 WordPiece vocabulary on input.
- For a given token, its input representation is constructed by summing the token embeddings, the segmentation embeddings and the position embeddings.

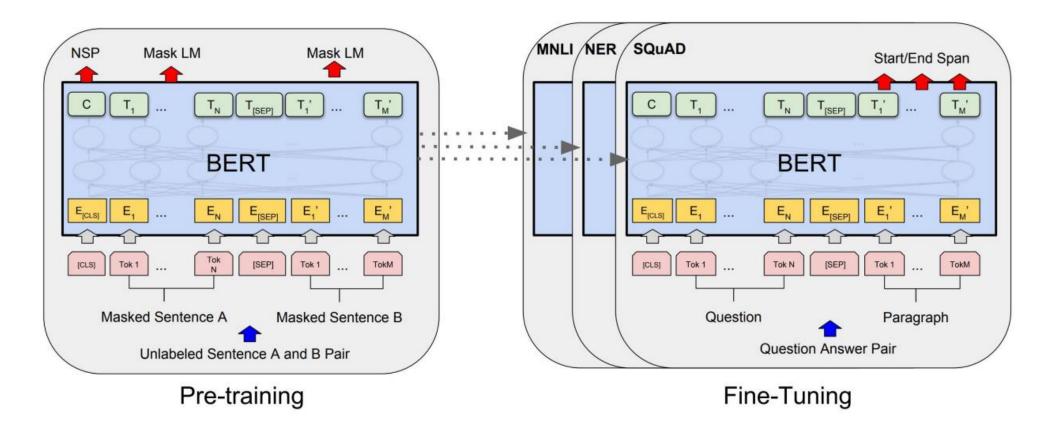
Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]
Token Embeddings	E _[CLS]	E _{my}	E _{dog}	E _{is}	E _{cute}	E _[SEP]	E _{he}	E _{likes}	E _{play}	E _{##ing}	E _[SEP]
	+	+	+	+	+	+	+	+	+	+	+
Segment Embeddings	E _A	E _A	E _A	E _A	E _A	E _A	E _B	E _B	E _B	E _B	E _B
	+	+	+	+	+	+	+	+	+	+	+
Position Embeddings	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀

Source of Image : BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019)

Training Details

- Data: Wikipedia (2.5B words) + BookCorpus (800M words)
- Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- Training Time: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

Fine-Tuning Procedure



BERT: Evaluation

BERT was massively popular and hugely versatile; finetuning BERT led to new state-ofthe-art results on a broad range of tasks.

- QQP: Quora Question Pairs (detect paraphrase questions)
- QNLI: natural language inference over question answering data
- **SST-2**: sentiment analysis

- **CoLA**: corpus of linguistic acceptability (detect whether sentences are grammatical.)
- STS-B: semantic textual similarity
- MRPC: microsoft paraphrase corpus
- **RTE**: a small natural language inference corpus

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

